THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Assignment 1 Due Date: 16 Feb, 2017

- 1. Let $\gamma(t) = (t, t^2), t \in [0, 2]$ be a curve on \mathbb{R}^2 . Find the length of the curve.
- 2. Find the length of the curve defined by the equation $y = f(x) = x^2 + 2x, x \in [0, 3]$.
- 3. Prove that \sim is an equivalence relation on a set A if and only if both of the following hold:
 - (a) $a \sim a$ for all $a \in A$;
 - (b) let $a, b, c \in A$, if $a \sim b$ and $a \sim c$, then $b \sim c$.

(Remark: The second statement may be regarded as subsitute of the common notion 1.1 "Things which equal the same thing also equal one another" in Euclid's Elements.)

- 4. Prove or disprove the following statements of plane geometry (\mathbb{R}^2) .
 - (a) For all distinct points A and B, there exists a straight line L such that A and B lie on the opposite sides of the line L.
 - (b) For all distinct points A, B and C, there exists a circle C such that A, B and C lie on C.
- 5. Let n be a positive integer and let ~ be a relation defined on \mathbb{Z} which is given by $a \sim b$ if b a is divisible by n.
 - (a) Show that \sim is an equivalence relation.
 - (b) Write down the elements of $\mathbb{Z}_n := \mathbb{Z}/\sim$.
 - (c) Prove that addition of \mathbb{Z} induces an addition on \mathbb{Z}_n .
 - (d) Compute [21] + [35] where $[21], [35] \in \mathbb{Z}_6$.
- 6. Let \mathcal{P} be the set of all line segment on \mathbb{R}^2 (in the usual sense) and let $\phi : \mathcal{P} \to \mathbb{R}^+$ be a function such that $\phi(s)$ is the length of the line segment s.
 - (a) If s is a line segment on \mathbb{R} with endpoints (2,3) and (10,11), find $\phi(s)$.
 - (b) Define ~ to be a relation on \mathcal{P} such that $s_1 \sim s_2$ if $\phi(s_1) = \phi(s_2)$, i.e. lengths of s_1 and s_2 are the same. Show that ~ is an equivalence relation on \mathcal{P} .
- 7. Let $d : \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ be a distance function defined by $d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\}$. With respect to d:
 - (a) Find the distance between the points (1, -2) and (-3, 4).
 - (b) Draw the circle centered at the origin with distance 1.
 - (c) Repeat (a) and (b) by re-defining $d((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|$.